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Abstract, A time-dependent mathematical model for the conforming shell gas journal bearing is presented. A 
numerical scheme is devised to solve this mathematical model. The results of a dynamic simulation of the bearing 
are exhibited for a specific design. 

I. Introduction 

This article is devoted to the study of the conforming shell gas journal bearing, which is a 
potentially attractive alternative to roller bearings in gas turbine applications. It is expected 
to operate at higher shaft speeds and operating temperatures, and in addition the shell system 
can deform to accept higher loads than conventional gas bearings. Furthermore, it does not 
require the pressurisation systems of a conventional oil-lubricated bearing. 

A typical bearing, sketched in Fig. 1, consists of a rigid journal surrounded by flexible 
shells or pads. The journal rotates about a movable axis called the shaft centre. The shells 
are supported by flexible bridge pieces generally referred to as springs. Hemispherical joints 
connect each spring to a fixed housing. These hemispherical joints allow the springs to 
pivot. 

The shells overlap each other at their leading and trailing edges. The trailing edge of the 
lagging shell is always closer to the journal than the leading edge of the leading shell. A 
specified step height is built into this overlap, so that the trailing edge of the lagging shell is 
closer to the journal than the leading edge of the leading shell by at least the step height. There 
is a built-in distance between shells and journal before any component moves or deforms 
called the diametric clearance. 

Each spring makes two line contacts with the shells; the leading edge of the spring meets 
the adjacent shell about half-way from the leading edge of the shell, and the other is between 
the trailing spring ann and leading edge of the preceding shell. 

As the journal rotates, it drags air into the gaps between journal and shells. This generates 
pressures which cause the shells to deform about the shell-to-spring contacts. The springs also 
compress and rotate about the hemispherical joint in response to these pressures. 

The shaft centre is free to translate within the housing. The pressures generated between 
the journal and the shells form the only mechanism controlling the motion of the shaft centre. 
The motion of the journal therefore links the behaviour of all the shells, and a steady state can 
only be reached when the pressures between shells and journal resolve to equal the applied 
load on the journal. 

In general the shells and springs are all coupled mechanically, but the shells and springs 
are not connected together. Thus, contact between adjacent shells can be lost and regained in 
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Fig. 1. Conforming shell gas journal bearing. 

response to an applied load on the journal. Also a spring can become completely detached 
from the rest of the bearing and regain contact again. The springs can, however, be considered 
linked to the rigid housing. There is no reason why several breaks and contacts cannot occur 
at the same time. 

It is important to realise that Fig. 1 is not to scale. The length of the journal-to-shell air gap 
is much smaller than the circumferential length of the shell. The radial width of the shell is 
also much smaller than the circumferential length of the shell. The axial length of the shell is 
comparable to the circumferential length of the shell. 

The main objective of this article is to determine the stability of a bearing design. The 
configuration of shells, springs and shaft at steady state will also be evaluated. Other important 
points include whether separations can occur and, if so, when. The journal-to-shell air gap 
cannot be allowed to become arbitrarily small: a minimum air gap of five microns is generally 
accepted. The minimum film thickness should therefore be determined, especially at steady 
state. 

The accepted method in the engineering literature for finding steady states and stability of 
complex bearings is the nonlinear orbit method ([1], [2]). This involves the integration of a 
dynamic model from initial conditions forward in time. Thus, a time-dependent mathematical 
model is required. 

This article is split into five sections. In Section 2, a mathematical model is developed 
which is sufficiently simple to admit solution techniques, but at the same time accurately 
represents the bearing. Section 3 deals with the numerical method to solve the model from 
Section 2. Section 4 is an examination of the results of the simulation. Finally Section 5 briefly 
draws some conclusions. 
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2. Mathematical model 

The mathematical model incorporates assumptions about the design; these must be physically 
realistic or the resulting predictions may be inaccurate. The problem is not just to write down 
equations that represent the bearing, but also to solve these equations. The equations should 
be simplified as much as possible whilst the model still remains realistic. 

The long-thin geometry, typically characterised by an aspect ratio of 10 -3, is exploited to 
make asymptotic reductions of the Navier-Stokes equations. Gas lubricating films are very 
nearly isothermal because of the ability of the bearing materials to conduct away heat is 
greater than the heat generating capacity of the gas-film, see [3]. Thus, we assume the flow is 
isothermal. As gas viscosity is somewhat insensitive to changes in pressure and the temperature 
is virtually constant, we assume the gas viscosity is constant. Slip flow is negligible when 
the mean free path of the gas is small compared with the dimensions of the flow passage. 
The mean free path of the gas is much less than the minimum restriction of five microns 
placed on the film thickness. In addition, as seen in [4], slip flow effects at high speeds are 
less important. Thus, we shall assume no-slip conditions. The reduced Reynolds number is 
typically less than 10 -4  and therefore negligible in comparison to 1. No discontinuities in 
pressure or velocity are considered as Mach number is small. The Reynolds equation can be 
deduced as, for example, in [5]. Bearing surfaces will be assumed to be infinitely long so 
that only the one-dimensional form of Reynolds' equation need be solved. This assumption 
neglects the flow of gas in and out of the sides of the bearing (side flow). (An investigation of 
the influence of two-dimensional effects on the predicted performance of journal bearings is 
described in [6].) 

Let p i  be the pressure on shell i, H i the film thickness on shell i, T time, X arclength, # 
viscosity, U speed of the shaft surface, B a typical arclength, Pa ambient pressure, c a typical 
film thickness and u a typical shaft rotation frequency. After the non-dimensionalisation of 
X = Bx ,  T = t /u ,  H i = ch ~ and pi  = papi, the compressible Reynolds equation is given 
by 

cr (pihi) + A (p'h') = ~ ; ihi  , (1) 

where the bearing number is given by 

6 # U B  
A -  

paC2 

and the squeeze number by 

12#B2u 
O'--  

paC 2 

The pressure is assumed to return to ambient at either side of the shell, so the boundary 
conditions for Reynolds' equation are pi(0, t) = 1 and pi(R,  t) = 1 where R = L / B .  The 
initial conditions are arbitrary. 

The shells are modelled by curved beams [7] as they are long and thin, typically charac- 
terised by an aspect ratio of 10 -2. The time scales of the shells and springs are typically one 
hundredth of the time scale appropriate to the fluid motion. Thus, the shells and springs are 
assumed to have negligible mass and moment inertia. Also the radial distance between the 
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lower surface of the beam and the centre line is presumed constant, so that these two quantities 
can be simply related. A delta function is used to model the spring contact which takes place 
over a relatively small area. 

Let W ~ be the deformation of the centre line of shell i, F~ the spring force radially inward 
on shell i from the leading edge of spring i, E the Young's modulus, I the moment of inertia 
of the cross section about an axis through its centroid and perpendicular to the plane of 
the couple, d the axial length of the shell and Rp the initial radius of the shells. After the 
non-dimensionalisation W * = cwi and F~ = p,~Bf(, the curved beam equation is given by 

f O4W i 
r | ~ + 2~ 2 

where 
EIe  g-- 

padB 4 

and 

02W i . } 
+ ~4W" ~- 1 - pi + f~5(x - x'), (2) 

dt 2 

and 

d2ys 
dt 2 

~0 R -- F ~ ff  cos 0 dx + l, (4) 

where F = paB/Mcu 2 and I = WL/Mcu 2. The initial conditions on Xs ,  Xs ,  Ys and 1~s are 
prescribed according to the application under consideration. 

The remaining physics consists of the geometry and the equilibrium of forces. The move- 
ment is decomposed into rigid body motion and elastic deformations. The possible rigid body 
motions are separated as follows: 

Also there is a restriction on the solution space, 

w i (x ' ,  t) = 0, 

in which x' is the point of spring contact within the domain (0, R). 
The rigid body motion of the shaft is described simply by Newton's second law. Let 

(Xs,  Ys) be the Cartesian coordinates of the centre of the shaft (Fig. 1), Wc the external 
load per unit axial length, L the length of the shell, 0 the angle measured anticlockwise from 
the line of action of the applied force and M the shaft mass per unit axial length. After 
non-dimensionalisation by X s  = cxs and Ys = cys, the resolution equations are written 

d2xs 
F ~ .  fo R ff  sin 0 dx (3) 

B 
Rp" 

These dimensionless parameters represent non-dimensional measures of flexural rigidity and 
curvature respectively. The boundary conditions are 

--g S+ 2w ' (0,t)=0, + 2w' (R,t)=0 

and 

wi(R ,  t) = O. 
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Fig. 2. Spring in a circular geometry. 

(a) rigid body motion of the shaft; 
(b) rigid body motion of the springs; 
(c) rigid body motion of the shells. 

The unknowns for these rigid body motions are as follows: 
(a) position and velocity of the shaft centre: (zs, Ys), (ks, ~ts); 
(b) angle of rotation of spring i : ¢i; 
(c) two degrees of freedom for each shell (defined in equation (8)): ~, r/~. 

The modelling of these combined rigid body motions and elastic deformations requires some 
complicated geometry. Similarly, the equations for equilibrium of the forces on the springs 
and shells are complicated. The unknown forces per unit axial length are f~, fl, f~ and f~. 
These unknowns are solved for by taking moments for the spring, taking moments for the 
shell, resolving for the shell and matching forces between shells. The derivations of these 
equations are included here for completeness. 

Consider spring / as in Fig. 2. Let RH be the radius of the housing, cd the angle subtended 
from the leading edge of spring i to the pivot and t3 i the angle subtended from the trailing 
edge of spring i to the pivot. After non-dimensionalisation by F~ = paBf~ and F~ = paBf~, 
the moment equation for the spring becomes 

f~ sin(c() = f~ sin(/3~). (5) 

The spring is assumed to satisfy Hooke's Law on both sides of the pivot. This results in the 
non-dimensional model 

f~ =c3yl and f~=c3y~, 
in which c3 = kc/paBd. 

Now consider the geometry at the trailing edge of the shell, in particular the rotation and 
compression of the spring. Let T i (X, T) denote the total distance from the surface of the shaft 
to the housing, L ~ (X) represent the distance from the shell to the housing before loading while 
still symmetric, ¢~ denote the anticlockwise rotation and H i (X, T) denote the film thickness 
at arclength X and time T. Then the compression at the trailing edge of the spring can be 
written 

T~(L,T)+Y~+[2RHsin(~---2)]~bi=Hi(L,T)+Li(L). 

After non-dimensionalisation this equation becomes 

h i(R, t) = c~ + y~ + ¢~, (6) 
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Fig. 3. Shell in a circular geometry. 

where, c~. = [T i (L ,T )  - Li(L)] /c ,  H i ( L , T )  = ch i (R , t ) ,  @ = 
Y~ = cy~. Similarly, at the leading edge of the spring 

i [sin(c~/2) ¢i. + y , -  

The terms c] and c~ are expressed in terms of xs,  ~ ,  Ys and rfi as follows: 

c] = CM + (xs  + ~i) sin(O ~ + a~) + (YS + ~?i) cos(O~ + a~) 

and 

i c 2 = CM + (XS + ~i) sin(O ~ + ai _ 5~) + (YS + ¢ )  cos( Oi + a ~ - 5i). 

Here CM is the non-dimensional mean clearance, defined as follows. Half the diametric 
clearance is the minimum distance from the surface of the journal to the shells before any 
component moves or deforms. The dimensional mean clearance is equal to half the diametric 
clearance plus half the step height: 

Diametric Clearance S 
CM = + -  

2 2 

and the dimensionless mean clearance is CM = CM/C. 
Let R p  be the radius of the pad, 5 i the angle subtended between trailing edge of the shell 

and leading spring arm and 7 i the angle subtended between leading spring arm and leading 
edge of the shell. The independent variable on each shell is the arclength x. The angle 0 is 
related to the independent variable by 

O= -7 x + ( O i + W + ¢ ) ,  

where e? + ~i = 5i, 5i = 7 i ( R  _ x ' ) / x '  and x ' is the arclength coordinate of the position 
of leading spring arm contact. The film thickness is expressed in two parts, the first being the 
rigid body motion and the second the deformation. The film thickness satisfies the relation 

h i (x, t) = - w  ~ (x, t) + CM + (xs  + ~ )  sin 0 + (YS + ~ )  cos O, (8) 

where ~ and ~7~ represent the rigid body motions of the shell. ~i and ¢ represent the unloaded 
position of the shell and are solutions of the equations: 

_ s  = ~ sin(Oi + ~, _ 5i ) + ¢ cos(Oi + cd - 5 ~) 
2 

[2RH sin(13i /2)]¢i / c  and 

(7) 
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Fig. 4. Gaps that may occur in the conforming shell system. 

563 

and 

_s ___ ~i sin(0 / + cei + 7i) + r/i cos(0 / + ai + 7i) 
2 

where s is the non-dimensional step height. 
After non-dimensionalisation by F~ = paBf~, the moment equation becomes 

• Ji R ~i 
f{ sin(5i) + f~ sin(Ti + ~i) = (pi _ 1) sin(0 - c( + - 0 i) dx. (9) 

Resolving along the radius at 0 = 0 i + ~i results in the second, and last, force equilibrium 
equation for the shell. (Note that the resolution equation perpendicular to the radius 0 = 
0' + cd can be derived from equations (9) and (10) providing cos 5i ¢ 0.) After the non- 
dimensionalisation by F~ = paBf~, the resolution equation along 0 = 0 i + c( becomes 

/0" f~ -t- f ;  cos("//) + f~ cos(5 i) = ( p i _  1 ) c o s ( 0 -  0 i - c~') dx. (10) 

The next stage is to deal with the inter-shell links. The forces between adjacent shells must 
balance, so for the N-shell model this gives 

f~+l _ f~+l = f~. (1 1) 

Introduce the gap for shell i, now no longer in contact with shell i - 1, G~, see Fig. 4. This 
gap is non dimensionalised by G~ = cg~. Then the step height equation can be written 

hi-  (0, t) = h i(R, t) + s + gi. (12) 

While the two shells remain in contact the zero gap equation, gi = 0, closes the system of 
equations. But the inequality f~ > 0 must be satisfied simultaneously. If there is a gap present 
between the two shells then the zero force equation, f~ = 0, closes the system of equations, 
and the inequality g~ ) 0 must be satisfied simultaneously. Hence there are two models for 
each shell. The exact point at which transitions between these two different possibilities takes 
place is not known a priori. For each model there is an extra inequality constraint which 
predicts the point of transition. 

If a break occurs between spring i, shell i and shell i - 1 then spring i no longer plays 
any part in the system behaviour. The rotation of spring i cannot be determined uniquely as it 
is no longer in contact with any shells. However, the position of the spring must be uniquely 
determined to deduce the point at which contact is regained. Introduce two new variables 
G~, the gap between spring i and shell i - 1, and G~, the gap between spring i and shell i. 
Non-dimensionalise both variables as G~ = c9~ and C i = c9]. To fix the value of the spring 
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Fig. 5. Domain of integration in (x, t) space. 

rotation assume that spring i is only just out of contact with shell i - 1. That is, 0 < g~ << 1 
which to first order is the same as g~ = 0. Thus, the only new variable when a spring break 
occurs is g~ and as for the shell breaks this is determined by the equation f~ = 0. Thus, the 
film thickness at the leading edge of spring i is now given by 

i [sin(°l~/2) ] ¢i i 
h i ( x ' , t ) = c l  + Y ] -  [s in(f l i /2) j  - g l ,  

with the inequality g~ /> 0. If contact is regained, gi = 0 and the inequality f~ > 0 must 
be satisfied simultaneously. Hence there are two models for each spring i. The exact point at 
which transitions between these two different possibilities takes place is not known a priori. 

Hence, ~ and r/~ are given by 

• sin(o?/2)]  ¢ i _ g  ~ = [¢~- ¢i] sin(0i + c d ) +  [r/~- r/i]cos(0, + c ( )  

and 

Y~2 + ¢i gi i c~i - 

(13) 

(14) 

Equations (12), (13) and (14) are used to determine the angle of rotation of the spring and 
the two degrees of freedom of the shell. Equations (5), (9), (10) and (11) are the four equations 
employed to determine the forces per unit axial length. There are two possible equations to 
solve for each of the gaps either a zero force condition or a zero gap condition. This leads 
to a total of 4 ~ different models for an N-shell bearing each having to satisfy 2N additional 
inequality constraints. These 2N constraints on the solution space of each of the 4 'v models 
determine the time at which transitions take place. 

3. Numerical method 

The Reynolds equation can be written in the following form: 

fx + Wt =- O, 

where 

f = Aph - p h  30p and w = aph. 
Ox 
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Let xj be a grid point and Xj+I/2 = (X j+ 1 -1- Xj)/2. Integrating the Reynolds equation over a 
rectangular domain in (x, t) space as in Fig. 5 and applying Green's theorem, 

f f {f~ + wt) dx dt = 

t ~ J  

f f dt - w dx 
{~en+O n+O n+l n - f~_½ )(t  - t n) + ( ~ + '  - ~ j  ) % + 1  - x~_!)  

~+o ~+~ (~}~+~ - ~ } ~ ) ( x j + ~  - x j _ , )  
(S " + °  - Sj_½)(t - t ~)  + J+2 2 ' 

where fn+o is an approximation to f between time levels. Our scheme is formed by setting 
the right-hand side to zero. By summing, we obtain the discrete conservation law: 

J-l~ W~+I(xj+I_ Xj_I ) __-- ~ W3(Xj+I - Xj-I) 
"--' 2 2 j=l j=l 

+ (tn+l _ t n ) [ f ~ + O  _ fn+O] 

It is also sensible to suggest the following discretisation: 

fj+ l ~-- A(ph)j+½ -(ph3)j+½ ( Pj+.._____II - pj "~) . 
\ Xj+ 1 -- Xj ,t 

As the Couette term (Aph) is induced by relative slide motion, we upwind this term: 

A(ph)j+½ ~_ A(ph)j. 

The pressure gradient induces the Poiseuille term (ph3Op/Ox), so this is discretised symmet- 
rically: 

(ph3)j+l -Jr (ph3)j (ph3)j ½"~ 
+ -- 2 

The above is not the only possible symmetric discretisation. Others options include (ph 3 )j + ½ = 

pj + i h)+ ½ or even linear combinations of the above. However, we shall adopt the first choice. 

We discretise the term f j_ 1 in a similar fashion. The functions fn+O can be interpreted as 

a weighted sum of f between the two different time levels t ~ and t '~+1. This results in the 
following discretisation: 

F~ +° = O, (15) 

where 

F~ +O a( (ph)~ - (ph)~+l) -k-O { 2(tn+l - t~) -- Xj_ 1 

X (A(ph)j_ 1 - A(ph)j -I- [ (phg)jT.2 "+" (ph3)j 

-- [ (ph3)j q-2 (ph3)j- l 

(pJ__+! 
Xj+l 

n-t- I 
+,, 0,{ 
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-[(ph3)j- t - -~(ph3)j- l](~-Px~;:))n 

for j = 1 , 2 , . . . ,  J - 1. The boundary conditions for pressure are imposed in the form 

p~ = p~, = 1 for all n. 

Equation (2), the curved beam equation, with appropriate boundary conditions is an Euler- 
Lagrange formulation of an extremum principle. The minimisation of strain energy in this 
extremum principle is an alternative physical statement of this problem. In particular, the 
corresponding variational problems can easily be solved using the finite element method, 
see [8] and [9]. The Sobolev space in which the solution for wi(x, t) is sought at time t is 
therefore 

H2E = {wi(x) • He(O,R) lwi(x ' )= 0, w ' ( R ) = 0 } .  

Thus, the weak formulation of this problem for w i I{t=constant} • H~: is 

a(w i, u) = l(u) for all u • H~,  

where the bilinear form 

~0 R ( 02W i 02U ~ 2 0W i 07~ ) a(w i, U) = \ ~ ~ -~X dx r z~ -~x ~- t~4uwi 

[ ,Ow i wi(O,t)~x(O,t) ] [u(0, t)-g2 (0, t) + 

and the linear functional 

/0 = u( -p)dx + / ; u ( 0 , t ) .  

In the linear functional the term r(Oawi/Ox 3 + ~20wi/Ox)(0, t) is identified with the dimen- 
sionless force per unit axial length f~. For the finite element space to be conforming it is 
necessary that members of the trail space have continuous first derivatives and the position 
of spring contact is chosen to be a mesh point. So the standard choice for this problem of 
Hermite cubic basis functions was made and the mesh chosen appropriately. 

Consider equation (4), which may be rewritten as the system 

dvs = r ~.~-" [ R p  i cos(0) dx + l 
dt J0 

and 

dys 
V S . 

dt 
Numerical methods to discretise ordinary differential equations of this type are described in 
[ 10]. Integrating both sides of these equations between t r~ and t n+l results in the equations 

f t~+' fo R l(t T M  vs(t  ~+l ) = vs( t  n) + F ~-~ pi cos(O)dxdt + - t ~) (16) 
jtn 
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and 
~tn+l 

ys(t n+l) = ys(t n) + ]t n vsdt. (17) 

It only remains to choose a discrete approximation to the integrals in time and space. The 
integral in space is approximated simply by the trapezium rule. However, the integral in 
time has already been considered in the discretisation of the Reynolds equation. It would be 
inconsistent to choose a different approximation to this operator at this point, so we use the 
weighted sum as before. Hence equations (16) and (17) are discretised as 

J - l  
V~ +' -~ V~-~- l(t n+l -- t n) ~- O(t n+l -- tn)r  E Z ( X r + l  2 xr) ~i(xr 'xr+l)n+l 

i r=O 

J - 1  ( X r + l  -- Xr) ~i(Xr, Xr+l) n +(1 - O)(t "+l - tn)F ~ ~ 2 
i r=O 

and 

n + l  n n nT1 Ys Ys + ( t n + l  + = - t  ) [ 0 v  s (1 - 

where 

.~i(Xr, Xr+l) = pi(xr+l, t) COS O(Xr+l) Jr Pi(Xm t) COS O(Xr). 

Similarly we discretise equation (3). 
The integrals in the moment equations and resolution equations are estimated by the 

trapezium rule. 
Three important points must be taken into account when choosing the spatial mesh. The 

first point is that there is a boundary layer at the trailing edge of the pressure profile. The 
second point is that the location of spring contact must be a mesh point if the trial space is to 
be conforming. The third is that for each extra mesh point there is an increase of 4 N  extra 
unknowns in the solution vector. The answer is clearly a mesh function which compromises 
between these requirements. The mesh should be clustered towards the trailing edge of the 
shells to capture the pressure change. The local clustering of points does not increase the 
number of mesh points excessively. Also the variation in mesh sizes must be continuous to 
ensure the truncation errors do not become large. 

The discretisation so far simulates the full bearing without breaks, and the solution of this 
nonlinear algebraic system must be found at each time-step. Two methods were experimented 
with. The first was a Picard iteration taking the equations in turn and substituting the solution 
of one into the right-hand side of another, until no further changes took place. The second was 
a matrix method solving all the equations in one large Newton iteration. 

The Picard iteration did not always converge, and when it converged it did so slowly. To 
attempt to remedy this situation numerical experiments with variable relaxation factors took 
place. This did guarantee convergence in most cases, although the convergence was slow. 

The Jacobian in Newton's method is of the form 

):(o) 
where A is a banded square matrix. The upper section of the Jacobian contains the finite 
element discretisations, the algebraic equations for the film thickness and the linearisations 
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of the discretisation of the Reynolds equation. The lower section of the Jacobian contains 
integral equations for the forces, the algebraic equations for the rigid body motions and the 
discretisation of the system of ordinary differential equations in time representing the shaft 
motion, xl is a vector of 4 N ( J  + 1) elements and x2 is a vector of 9N + 4 elements for an 
N-shell bearing with (d + 1) mesh points on each shell. The four unknowns on each mesh 
point are pressure, film thickness, deformation and the derivative of the deformation. There are 
also 4N unknown forces, 3N unknown rigid body motions, 2N unknown gaps, the position 
of the shaft and the velocity of the shaft. Alternatively, the matrix system can be written as 
the simultaneous equations 

Axl + Bx2 = c 

and 

P x  I + Q x  2 = d ,  

where A is a square matrix with bandwidth thirteen. Thus 

Xl = A - i ( c  - Bx2) 

and 

(18) 

(Q - p A - I B ) x 2  = (d - PA- lc ) .  (19) 

To solve this system requires the following steps: 
1. Solve Az = c 
2. Solve A W  = B 
3. Solve equation (19) for x2 
4. Solve equation (18) for xl 

Clearly steps 3 and 4 are trivial; the only hard work is involved in inverting A. This is achieved 
by using a banded LU decomposition technique with partial pivoting which takes advantage 
of the structure of A and can be used on multiple right-hand sides. The matrix A is stored as 
column vectors, diagonally down the band, resulting in very low storage requirements. 

The numerical treatment of separation relies on knowing which constraints are active at 
the previous time-step. Assume first of all that this set of constraints still applies over the next 
time-step. Process the next time-step and examine the feasibility of the solution. If the solution 
is feasible, then continue to the following time-step. However, if the solution is infeasible 
examine the solution vector. Rely on the assumptions that: 

(a) A negative force indicates a break on the next time-step. 
(b) A negative gap indicates contact regained on the next time-step. 

Update the active set of constraints over the time-step and process the solution again. This 
process should continue until a feasible solution is obtained, or a maximum number of attempts 
to find a feasible solution have failed. The matrix method of solution naturally accepts the new 
equality constraints necessary for separation. The new equations affect P ,  Q and d only. The 
Picard iteration would require a multi-dimensional shooting technique to deal with separation. 
This is an additional reason to favour the matrix method over Picard iteration. 

The discretisation can clearly be seen to be consistent with the model. The only difficulties 
are the time-steps where a transition takes place. During these time intervals the discretisation 
is inconsistent, but the total time interval is O(Dt) where Dt is the time-step. By choosing a 
suitable degree of implicitness the scheme does not suffer from numerical instabilities. 



Simulation of the shell gas journal bearing 569 

There are numerical aspects of this problem that cannot be guarded against. These include 
the possibility that Newton's method is not provided with a good enough first guess. This 
situation can result in either an incorrect root of the nonlinear algebraic system being found 
or the iteration not converging at all. Newton's method can be aided considerably in these 
situations by reducing the time-step. Also there is no guarantee that the technique for finding 
feasible solutions will work. Indeed it has not been proved that a feasible solution to the 
algebraic system exists. 

4. Results  of  the s imulat ion  

The different factors limiting the stable operation of the conforming shell bearing will be 
investigated here. These factors include dynamic instability and separations between bearing 
components. It is not feasible to perform a comprehensive study of all bearing designs, so a 
specific design will be chosen and reported upon. 
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Fig. 6. Trajectory of the shaft centre for a 4-shell bearing with l = 120. 
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Fig. 8. Steady state results for a 4-shell bearing with l = 120. 

3.0 

Consider a 4-shell application where the shaft is started at the origin and allowed to time 
step until steady state is reached or a maximum number of  steps have elapsed. Shells are 
labelled in an anti-clockwise direction starting from shell 1, see Fig. 1. The leading edge is 
always x = 0.0, the trailing edge in this case is x = 3.0. Let  the ys-axis be along the line of  
action of  the applied load. The xs-axis  is taken perpendicular to the ys-axis and through the 
centre of  the housing, see Fig. 1. Hence the origin is the housing centre. The 4-shell bearing 
is as shown in Fig. 1. Choose the following parameter set: 

A = 19, a = 1, F = 40, I = 120, C M = 4, • = 0.5, r = 1, 

a 7 s = 4 ,  e 3 = 4 . 2 ,  01 = 0 . 7 9 ,  ~ = 0 . 4 3  and - 0 . 4 4 .  
7 + 6  
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Fig. 9. Comparison of the variation of force with time for a 4-shell bearing with 1 = 120. 

The definitions of these parameters are given in Appendix A for convenient reference. The 
time-step, for the results in this section, is chosen to be 0.002 with 40 space intervals on each 
shell. The steady state was characterised by the velocity of the shaft in both directions being 
zero to four decimal places. 

The trajectory of the shaft centre is given in Fig. 6. The steady state profiles of pressure 
and film thickness are given in Fig. 8. Note that the pressure generated on shell 1 and shell 4 
is insignificant in comparison to shell 2 and shell 3. The bottom two shells take all the load 
from the shaft. The parameter set is particularly interesting in that it gives rise to breaks in 
the conforming shell system. In Fig. 7 the variation of the gap at the trailing edge of shell 1 
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Fig. 10. Trajectory of the shaft centre for a 4-shell bearing with 1 --- 65. 
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Fig. 11. Variation of gap at the trailing edge of shell 1 for a 4-shell bearing with I -- 65. 

against time can be observed. It is of  value to compare this gap with the variation of  f3 on 
shell 1 in Fig. 9. Notice that the gap is zero when the force is positive and vice versa. 

Load in itself is seen as a stabilizing influence when all other properties remain constant. 
This stabilizing is well-known in the engineering literature [1]. Thus, reducing I might well 
reveal other characteristics of  this design. Keeping the parameter set from the first run except 
putting I = 65 produces the trajectory in Fig. 10 after 20000 time-steps. The orbit in Fig. 10 
decreases in amplitude as time progresses, but the rate of  reduction gets progressively slower. 
This orbit is either just  stable or producing a limit cycle. Experimental evidence does indicate 
that periodic orbits do occur in rotating machinery. However,  as they usually occur very close 
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Fig. 12. Trajectory of  the shaft  centre for a 4-shell  bear ing with I = 60. 

to the onset of destructive instabilities, they are costly to investigate. It is very difficult to 
predict whether the orbit in Fig. 10 is in fact tending to a periodic orbit or just slowly tending 
to an equilibrium point. Moreover the accompanying graph in Fig. 11 for this parameter set 
reveals the very worrying characteristic of chatter. Chatter is the rapid intermittent contact 
between components which is very likely to cause damage. However, this particular effect is 
present only for parameter sets that are already periodic, so it is not a further restriction. 

If the load is reduced slightly further major changes occur in the trajectories of the shaft. 
Keeping the same parameter set as the first run except putting I = 60 produces the trajectory 
in Fig. 12 after 20000 time steps. The orbit in Fig. 12 is increasing in amplitude as time 
progresses, and the rate of increase is getting progressively slower. This behaviour represents 
either an unstable orbit or a limit cycle. 

There are other solution techniques which, although limited in their region of application, 
can be used to check the numerical results. Analytical solutions to the Reynolds equation 
and beam equation can be found to check the discretisations individually. Also asymptotic 
techniques [1 l] can be used to construct simplified systems. 

5. Conclusions 

The main objective of this investigation was to gain understanding of the dynamic and steady 
behaviour of the conforming shell gas journal bearing. It turns out that there are three factors 
limiting the operation of the bearing. The first factor is the onset of dynamic instabilities. 
The second factor is the possibility of touchdown during the start-up phase of operation. The 
third factor is separations. For any particular design these factors form the upper and lower 
bounds on the range of acceptable loads. In conclusion, this analysis predicts that this design 
can operate at the higher loads, speeds and temperatures required. 
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A. Index of Dimensionless Constants 

Description Formula Symbol  

beating number  

squeeze number  

flexibility coefficient in beam equation 

curvature coefficient in beam equation 

dimensionless length of  the shell 

dimensionless spring coefficient 

dimensionless coefficient in equation of  journal 

dimensionless load in equation of  journal 

dimensionless step height 

dimensionless mean clearance 

6 # U B / p ~ c  2 A 

12#B2u/p~c  2 ~r 

E I c / p ~ d B  4 r 

B / R p  

B 
k c / p a B d  c3 

p a B / M c u  2 F 

W L / M c u  2 l 

S/c 
(D.C. + S ) / 2 c  cM 
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